Make the utf8_range implementation just in C

PiperOrigin-RevId: 590961088
pull/15090/head
Protobuf Team Bot 2023-12-14 09:19:05 -08:00 committed by Copybara-Service
parent 1db8ed47c2
commit 9c7d2b9d83
13 changed files with 499 additions and 477 deletions

View File

@ -4,7 +4,7 @@ if test "$PHP_PROTOBUF" != "no"; then
PHP_NEW_EXTENSION(
protobuf,
arena.c array.c convert.c def.c map.c message.c names.c php-upb.c protobuf.c third_party/utf8_range/naive.c third_party/utf8_range/range2-neon.c third_party/utf8_range/range2-sse.c,
arena.c array.c convert.c def.c map.c message.c names.c php-upb.c protobuf.c third_party/utf8_range/utf8_range.c,
$ext_shared, , -std=gnu99 -I@ext_srcdir@/third_party/utf8_range)
PHP_ADD_BUILD_DIR($ext_builddir/third_party/utf8_range)

View File

@ -241,7 +241,7 @@ bool PyUpb_PyToUpb(PyObject* obj, const upb_FieldDef* f, upb_MessageValue* val,
// Use the object's bytes if they are valid UTF-8.
char* ptr;
if (PyBytes_AsStringAndSize(obj, &ptr, &size) < 0) return false;
if (utf8_range2((const unsigned char*)ptr, size) != 0) {
if (!utf8_range_IsValid(ptr, size)) {
// Invalid UTF-8. Try to convert the message to a Python Unicode
// object, even though we know this will fail, just to get the
// idiomatic Python error message.

4
ruby/.gitignore vendored
View File

@ -8,8 +8,6 @@ pkg/
tmp/
tests/google/
ext/google/protobuf_c/third_party/utf8_range/utf8_range.h
ext/google/protobuf_c/third_party/utf8_range/range2-sse.c
ext/google/protobuf_c/third_party/utf8_range/range2-neon.c
ext/google/protobuf_c/third_party/utf8_range/naive.c
ext/google/protobuf_c/third_party/utf8_range/utf8_range.c
ext/google/protobuf_c/third_party/utf8_range/LICENSE
lib/google/protobuf/*_pb.rb

View File

@ -75,7 +75,7 @@ task :copy_third_party do
# We need utf8_range in-tree.
utf8_root = '../third_party/utf8_range'
%w[
utf8_range.h naive.c range2-neon.c range2-neon.c range2-sse.c LICENSE
utf8_range.h utf8_range.c LICENSE
].each do |file|
FileUtils.cp File.join(utf8_root, file),
"ext/google/protobuf_c/third_party/utf8_range"

View File

@ -22,7 +22,7 @@ $INCFLAGS += " -I$(srcdir)/third_party/utf8_range"
$srcs = ["protobuf.c", "convert.c", "defs.c", "message.c",
"repeated_field.c", "map.c", "ruby-upb.c", "wrap_memcpy.c",
"naive.c", "range2-neon.c", "range2-sse.c", "shared_convert.c",
"utf8_range.c", "shared_convert.c",
"shared_message.c"]
create_makefile(ext_name)

View File

@ -74,9 +74,7 @@ begin
FFI::Compiler::CompileTask.new 'protobuf_c_ffi' do |c|
configure_common_compile_task c
# Ruby UPB was already compiled with different flags.
c.exclude << "/range2-neon.c"
c.exclude << "/range2-sse.c"
c.exclude << "/naive.c"
c.exclude << "/utf8_range.c"
c.exclude << "/ruby-upb.c"
end

View File

@ -23,9 +23,7 @@ exports_files([
filegroup(
name = "utf8_range_srcs",
srcs = [
"naive.c",
"range2-neon.c",
"range2-sse.c",
"utf8_range.c",
"utf8_range.h",
],
visibility = ["//:__subpackages__"],
@ -34,9 +32,7 @@ filegroup(
cc_library(
name = "utf8_range",
srcs = [
"naive.c",
"range2-neon.c",
"range2-sse.c",
"utf8_range.c",
],
hdrs = ["utf8_range.h"],
strip_include_prefix = "/third_party/utf8_range",
@ -48,14 +44,19 @@ cc_library(
hdrs = ["utf8_validity.h"],
strip_include_prefix = "/third_party/utf8_range",
deps = [
":utf8_range",
"@com_google_absl//absl/strings",
],
)
cc_test(
name = "utf8_validity_test",
srcs = ["utf8_validity_test.cc"],
srcs = [
"utf8_range.c",
"utf8_validity_test.cc",
],
deps = [
":utf8_range",
":utf8_validity",
"@com_google_absl//absl/strings",
"@com_google_googletest//:gtest_main",

View File

@ -12,14 +12,12 @@ option (utf8_range_ENABLE_INSTALL "Configure installation" ON)
##
# Create the lightweight C library
add_library (utf8_range STATIC
naive.c
range2-neon.c
range2-sse.c
utf8_range.c
)
##
# A heavier-weight C++ wrapper that supports Abseil.
add_library (utf8_validity STATIC utf8_validity.cc)
add_library (utf8_validity STATIC utf8_validity.cc utf8_range.c)
# Load Abseil dependency.
if (NOT TARGET absl::strings)

467
third_party/utf8_range/utf8_range.c vendored Normal file
View File

@ -0,0 +1,467 @@
// Copyright 2023 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.
/* This is a wrapper for the Google range-sse.cc algorithm which checks whether
* a sequence of bytes is a valid UTF-8 sequence and finds the longest valid
* prefix of the UTF-8 sequence.
*
* The key difference is that it checks for as much ASCII symbols as possible
* and then falls back to the range-sse.cc algorithm. The changes to the
* algorithm are cosmetic, mostly to trick the clang compiler to produce optimal
* code.
*
* For API see the utf8_validity.h header.
*/
#include "utf8_range.h"
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#ifdef __SSE4_1__
#include <emmintrin.h>
#include <smmintrin.h>
#include <tmmintrin.h>
#endif
#if defined(__GNUC__)
#define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
#define FORCE_INLINE_ATTR __forceinline
#else
#define FORCE_INLINE_ATTR
#endif
static FORCE_INLINE_ATTR inline uint64_t utf8_range_UnalignedLoad64(
const void* p) {
uint64_t t;
memcpy(&t, p, sizeof t);
return t;
}
static FORCE_INLINE_ATTR inline int utf8_range_AsciiIsAscii(unsigned char c) {
return c < 128;
}
static FORCE_INLINE_ATTR inline int utf8_range_IsTrailByteOk(const char c) {
return (int8_t)(c) <= (int8_t)(0xBF);
}
/* If return_position is false then it returns 1 if |data| is a valid utf8
* sequence, otherwise returns 0.
* If return_position is set to true, returns the length in bytes of the prefix
of |data| that is all structurally valid UTF-8.
*/
static size_t utf8_range_ValidateUTF8Naive(const char* data, const char* end,
int return_position) {
/* We return err_pos in the loop which is always 0 if !return_position */
size_t err_pos = 0;
size_t codepoint_bytes = 0;
/* The early check is done because of early continue's on codepoints of all
* sizes, i.e. we first check for ascii and if it is, we call continue, then
* for 2 byte codepoints, etc. This is done in order to reduce indentation and
* improve readability of the codepoint validity check.
*/
while (data + codepoint_bytes < end) {
if (return_position) {
err_pos += codepoint_bytes;
}
data += codepoint_bytes;
const size_t len = end - data;
const unsigned char byte1 = data[0];
/* We do not skip many ascii bytes at the same time as this function is
used for tail checking (< 16 bytes) and for non x86 platforms. We also
don't think that cases where non-ASCII codepoints are followed by ascii
happen often. For small strings it also introduces some penalty. For
purely ascii UTF8 strings (which is the overwhelming case) we call
SkipAscii function which is multiplatform and extremely fast.
*/
/* [00..7F] ASCII -> 1 byte */
if (utf8_range_AsciiIsAscii(byte1)) {
codepoint_bytes = 1;
continue;
}
/* [C2..DF], [80..BF] -> 2 bytes */
if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF &&
utf8_range_IsTrailByteOk(data[1])) {
codepoint_bytes = 2;
continue;
}
if (len >= 3) {
const unsigned char byte2 = data[1];
const unsigned char byte3 = data[2];
/* Is byte2, byte3 between [0x80, 0xBF]
* Check for 0x80 was done above.
*/
if (!utf8_range_IsTrailByteOk(byte2) ||
!utf8_range_IsTrailByteOk(byte3)) {
return err_pos;
}
if (/* E0, A0..BF, 80..BF */
((byte1 == 0xE0 && byte2 >= 0xA0) ||
/* E1..EC, 80..BF, 80..BF */
(byte1 >= 0xE1 && byte1 <= 0xEC) ||
/* ED, 80..9F, 80..BF */
(byte1 == 0xED && byte2 <= 0x9F) ||
/* EE..EF, 80..BF, 80..BF */
(byte1 >= 0xEE && byte1 <= 0xEF))) {
codepoint_bytes = 3;
continue;
}
if (len >= 4) {
const unsigned char byte4 = data[3];
/* Is byte4 between 0x80 ~ 0xBF */
if (!utf8_range_IsTrailByteOk(byte4)) {
return err_pos;
}
if (/* F0, 90..BF, 80..BF, 80..BF */
((byte1 == 0xF0 && byte2 >= 0x90) ||
/* F1..F3, 80..BF, 80..BF, 80..BF */
(byte1 >= 0xF1 && byte1 <= 0xF3) ||
/* F4, 80..8F, 80..BF, 80..BF */
(byte1 == 0xF4 && byte2 <= 0x8F))) {
codepoint_bytes = 4;
continue;
}
}
}
return err_pos;
}
if (return_position) {
err_pos += codepoint_bytes;
}
/* if return_position is false, this returns 1.
* if return_position is true, this returns err_pos.
*/
return err_pos + (1 - return_position);
}
#ifdef __SSE4_1__
/* Returns the number of bytes needed to skip backwards to get to the first
byte of codepoint.
*/
static inline int utf8_range_CodepointSkipBackwards(int32_t codepoint_word) {
const int8_t* const codepoint = (const int8_t*)(&codepoint_word);
if (!utf8_range_IsTrailByteOk(codepoint[3])) {
return 1;
} else if (!utf8_range_IsTrailByteOk(codepoint[2])) {
return 2;
} else if (!utf8_range_IsTrailByteOk(codepoint[1])) {
return 3;
}
return 0;
}
#endif // __SSE4_1__
/* Skipping over ASCII as much as possible, per 8 bytes. It is intentional
as most strings to check for validity consist only of 1 byte codepoints.
*/
static inline const char* utf8_range_SkipAscii(const char* data,
const char* end) {
while (8 <= end - data &&
(utf8_range_UnalignedLoad64(data) & 0x8080808080808080) == 0) {
data += 8;
}
while (data < end && utf8_range_AsciiIsAscii(*data)) {
++data;
}
return data;
}
static FORCE_INLINE_ATTR inline size_t utf8_range_Validate(
const char* data, size_t len, int return_position) {
if (len == 0) return 1 - return_position;
const char* const end = data + len;
data = utf8_range_SkipAscii(data, end);
/* SIMD algorithm always outperforms the naive version for any data of
length >=16.
*/
if (end - data < 16) {
return (return_position ? (data - (end - len)) : 0) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
}
#ifndef __SSE4_1__
return (return_position ? (data - (end - len)) : 0) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
#else
/* This code checks that utf-8 ranges are structurally valid 16 bytes at once
* using superscalar instructions.
* The mapping between ranges of codepoint and their corresponding utf-8
* sequences is below.
*/
/*
* U+0000...U+007F 00...7F
* U+0080...U+07FF C2...DF 80...BF
* U+0800...U+0FFF E0 A0...BF 80...BF
* U+1000...U+CFFF E1...EC 80...BF 80...BF
* U+D000...U+D7FF ED 80...9F 80...BF
* U+E000...U+FFFF EE...EF 80...BF 80...BF
* U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
* U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
* U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
*/
/* First we compute the type for each byte, as given by the table below.
* This type will be used as an index later on.
*/
/*
* Index Min Max Byte Type
* 0 00 7F Single byte sequence
* 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
* 4 A0 BF Second byte after E0
* 5 80 9F Second byte after ED
* 6 90 BF Second byte after F0
* 7 80 8F Second byte after F4
* 8 C2 F4 First non ASCII byte
* 9..15 7F 80 Invalid byte
*/
/* After the first step we compute the index for all bytes, then we permute
the bytes according to their indices to check the ranges from the range
table.
* The range for a given type can be found in the range_min_table and
range_max_table, the range for type/index X is in range_min_table[X] ...
range_max_table[X].
*/
/* Algorithm:
* Put index zero to all bytes.
* Find all non ASCII characters, give them index 8.
* For each tail byte in a codepoint sequence, give it an index corresponding
to the 1 based index from the end.
* If the first byte of the codepoint is in the [C0...DF] range, we write
index 1 in the following byte.
* If the first byte of the codepoint is in the range [E0...EF], we write
indices 2 and 1 in the next two bytes.
* If the first byte of the codepoint is in the range [F0...FF] we write
indices 3,2,1 into the next three bytes.
* For finding the number of bytes we need to look at high nibbles (4 bits)
and do the lookup from the table, it can be done with shift by 4 + shuffle
instructions. We call it `first_len`.
* Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
* Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
* Again to get the indices of the 4th bytes.
* Take OR of all that 4 values and check within range.
*/
/* For example:
* input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
* first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
* 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
* 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
* 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
* 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
* Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
*/
/* Checking for errors:
* Error checking is done by looking up the high nibble (4 bits) of each byte
against an error checking table.
* Because the lookup value for the second byte depends of the value of the
first byte in codepoint, we use saturated operations to adjust the index.
* Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
match the correct index.
* If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
F4 -> 5
* Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
match the adjustment
* Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
be more 128 and lookup in ef_fe_table will return 0 but for F0
and F4 it will be 4 and 5 accordingly
*/
/*
* Then just check the appropriate ranges with greater/smaller equal
instructions. Check tail with a naive algorithm.
* To save from previous 16 byte checks we just align previous_first_len to
get correct continuations of the codepoints.
*/
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
const __m128i first_len_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
const __m128i first_range_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
/*
* Range table, map range index to min and max values
*/
const __m128i range_min_table =
_mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
const __m128i range_max_table =
_mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
/*
* Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
*/
/* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i df_ee_table =
_mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
/* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i ef_fe_table =
_mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i prev_input = _mm_set1_epi8(0);
__m128i prev_first_len = _mm_set1_epi8(0);
__m128i error = _mm_set1_epi8(0);
while (end - data >= 16) {
const __m128i input =
_mm_loadu_si128((const __m128i*)(data));
/* high_nibbles = input >> 4 */
const __m128i high_nibbles =
_mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_table[high_nibbles] */
__m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_table[high_nibbles] */
__m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
__m128i tmp1;
__m128i tmp2;
/* tmp1 = saturate_sub(first_len, 1) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
/* tmp2 = saturate_sub(prev_first_len, 1) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
/* range |= (tmp1, tmp2) << 2 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp1 = saturate_sub(first_len, 2) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
/* tmp2 = saturate_sub(prev_first_len, 2) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
/* range |= (tmp1, tmp2) << 3 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
/*
* Now we have below range indices calculated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* >9 for non ascii First Byte overlapping
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* Overlaps lead to index 9~15, which are illegal in range table */
__m128i shift1;
__m128i pos;
__m128i range2;
/* shift1 = (input, prev_input) << 1 byte */
shift1 = _mm_alignr_epi8(input, prev_input, 15);
pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
/*
* shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
* pos: | 0 1 15 | 16 17 239| 240 241 255|
* pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
* pos+112: | 112 113 127| >= 128 | >= 128 |
*/
tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
range = _mm_add_epi8(range, range2);
/* Load min and max values per calculated range index */
__m128i min_range = _mm_shuffle_epi8(range_min_table, range);
__m128i max_range = _mm_shuffle_epi8(range_max_table, range);
/* Check value range */
if (return_position) {
error = _mm_cmplt_epi8(input, min_range);
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
/* 5% performance drop from this conditional branch */
if (!_mm_testz_si128(error, error)) {
break;
}
} else {
error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
}
prev_input = input;
prev_first_len = first_len;
data += 16;
}
/* If we got to the end, we don't need to skip any bytes backwards */
if (return_position && (data - (end - len)) == 0) {
return utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Find previous codepoint (not 80~BF) */
data -= utf8_range_CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
if (return_position) {
return (data - (end - len)) +
utf8_range_ValidateUTF8Naive(data, end, return_position);
}
/* Test if there was any error */
if (!_mm_testz_si128(error, error)) {
return 0;
}
/* Check the tail */
return utf8_range_ValidateUTF8Naive(data, end, return_position);
#endif
}
int utf8_range_IsValid(const char* data, size_t len) {
return utf8_range_Validate(data, len, /*return_position=*/0) != 0;
}
size_t utf8_range_ValidPrefix(const char* data, size_t len) {
return utf8_range_Validate(data, len, /*return_position=*/1);
}

View File

@ -1,18 +1,19 @@
#ifndef THIRD_PARTY_UTF8_RANGE_UTF8_RANGE_H_
#define THIRD_PARTY_UTF8_RANGE_UTF8_RANGE_H_
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
#if (defined(__ARM_NEON) && defined(__aarch64__)) || defined(__SSE4_1__)
int utf8_range2(const unsigned char* data, int len);
#else
int utf8_naive(const unsigned char* data, int len);
static inline int utf8_range2(const unsigned char* data, int len) {
return utf8_naive(data, len);
}
#endif
// Returns 1 if the sequence of characters is a valid UTF-8 sequence, otherwise
// 0.
int utf8_range_IsValid(const char* data, size_t len);
// Returns the length in bytes of the prefix of str that is all
// structurally valid UTF-8.
size_t utf8_range_ValidPrefix(const char* data, size_t len);
#ifdef __cplusplus
} // extern "C"

View File

@ -15,446 +15,22 @@
*
* For API see the utf8_validity.h header.
*/
#include "utf8_validity.h"
#include <cstddef>
#include <cstdint>
#include "absl/strings/ascii.h"
#include "absl/strings/string_view.h"
#ifdef __SSE4_1__
#include <emmintrin.h>
#include <smmintrin.h>
#include <tmmintrin.h>
#endif
#include "utf8_range.h"
namespace utf8_range {
namespace {
inline uint64_t UNALIGNED_LOAD64(const void* p) {
uint64_t t;
memcpy(&t, p, sizeof t);
return t;
}
inline bool TrailByteOk(const char c) {
return static_cast<int8_t>(c) <= static_cast<int8_t>(0xBF);
}
/* If ReturnPosition is false then it returns 1 if |data| is a valid utf8
* sequence, otherwise returns 0.
* If ReturnPosition is set to true, returns the length in bytes of the prefix
of |data| that is all structurally valid UTF-8.
*/
template <bool ReturnPosition>
size_t ValidUTF8Span(const char* data, const char* end) {
/* We return err_pos in the loop which is always 0 if !ReturnPosition */
size_t err_pos = 0;
size_t codepoint_bytes = 0;
/* The early check is done because of early continue's on codepoints of all
* sizes, i.e. we first check for ascii and if it is, we call continue, then
* for 2 byte codepoints, etc. This is done in order to reduce indentation and
* improve readability of the codepoint validity check.
*/
while (data + codepoint_bytes < end) {
if (ReturnPosition) {
err_pos += codepoint_bytes;
}
data += codepoint_bytes;
const size_t len = end - data;
const unsigned char byte1 = data[0];
/* We do not skip many ascii bytes at the same time as this function is
used for tail checking (< 16 bytes) and for non x86 platforms. We also
don't think that cases where non-ASCII codepoints are followed by ascii
happen often. For small strings it also introduces some penalty. For
purely ascii UTF8 strings (which is the overwhelming case) we call
SkipAscii function which is multiplatform and extremely fast.
*/
/* [00..7F] ASCII -> 1 byte */
if (absl::ascii_isascii(byte1)) {
codepoint_bytes = 1;
continue;
}
/* [C2..DF], [80..BF] -> 2 bytes */
if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF && TrailByteOk(data[1])) {
codepoint_bytes = 2;
continue;
}
if (len >= 3) {
const unsigned char byte2 = data[1];
const unsigned char byte3 = data[2];
/* Is byte2, byte3 between [0x80, 0xBF]
* Check for 0x80 was done above.
*/
if (!TrailByteOk(byte2) || !TrailByteOk(byte3)) {
return err_pos;
}
if (/* E0, A0..BF, 80..BF */
((byte1 == 0xE0 && byte2 >= 0xA0) ||
/* E1..EC, 80..BF, 80..BF */
(byte1 >= 0xE1 && byte1 <= 0xEC) ||
/* ED, 80..9F, 80..BF */
(byte1 == 0xED && byte2 <= 0x9F) ||
/* EE..EF, 80..BF, 80..BF */
(byte1 >= 0xEE && byte1 <= 0xEF))) {
codepoint_bytes = 3;
continue;
}
if (len >= 4) {
const unsigned char byte4 = data[3];
/* Is byte4 between 0x80 ~ 0xBF */
if (!TrailByteOk(byte4)) {
return err_pos;
}
if (/* F0, 90..BF, 80..BF, 80..BF */
((byte1 == 0xF0 && byte2 >= 0x90) ||
/* F1..F3, 80..BF, 80..BF, 80..BF */
(byte1 >= 0xF1 && byte1 <= 0xF3) ||
/* F4, 80..8F, 80..BF, 80..BF */
(byte1 == 0xF4 && byte2 <= 0x8F))) {
codepoint_bytes = 4;
continue;
}
}
}
return err_pos;
}
if (ReturnPosition) {
err_pos += codepoint_bytes;
}
/* if ReturnPosition is false, this returns 1.
* if ReturnPosition is true, this returns err_pos.
*/
return err_pos + (1 - ReturnPosition);
}
#ifdef __SSE4_1__
/* Returns the number of bytes needed to skip backwards to get to the first
byte of codepoint.
*/
inline int CodepointSkipBackwards(int32_t codepoint_word) {
const int8_t* const codepoint =
reinterpret_cast<const int8_t*>(&codepoint_word);
if (!TrailByteOk(codepoint[3])) {
return 1;
} else if (!TrailByteOk(codepoint[2])) {
return 2;
} else if (!TrailByteOk(codepoint[1])) {
return 3;
}
return 0;
}
#endif // __SSE4_1__
/* Skipping over ASCII as much as possible, per 8 bytes. It is intentional
as most strings to check for validity consist only of 1 byte codepoints.
*/
inline const char* SkipAscii(const char* data, const char* end) {
while (8 <= end - data &&
(UNALIGNED_LOAD64(data) & 0x8080808080808080) == 0) {
data += 8;
}
while (data < end && absl::ascii_isascii(*data)) {
++data;
}
return data;
}
template <bool ReturnPosition>
size_t ValidUTF8(const char* data, size_t len) {
if (len == 0) return 1 - ReturnPosition;
const char* const end = data + len;
data = SkipAscii(data, end);
/* SIMD algorithm always outperforms the naive version for any data of
length >=16.
*/
if (end - data < 16) {
return (ReturnPosition ? (data - (end - len)) : 0) +
ValidUTF8Span<ReturnPosition>(data, end);
}
#ifndef __SSE4_1__
return (ReturnPosition ? (data - (end - len)) : 0) +
ValidUTF8Span<ReturnPosition>(data, end);
#else
/* This code checks that utf-8 ranges are structurally valid 16 bytes at once
* using superscalar instructions.
* The mapping between ranges of codepoint and their corresponding utf-8
* sequences is below.
*/
/*
* U+0000...U+007F 00...7F
* U+0080...U+07FF C2...DF 80...BF
* U+0800...U+0FFF E0 A0...BF 80...BF
* U+1000...U+CFFF E1...EC 80...BF 80...BF
* U+D000...U+D7FF ED 80...9F 80...BF
* U+E000...U+FFFF EE...EF 80...BF 80...BF
* U+10000...U+3FFFF F0 90...BF 80...BF 80...BF
* U+40000...U+FFFFF F1...F3 80...BF 80...BF 80...BF
* U+100000...U+10FFFF F4 80...8F 80...BF 80...BF
*/
/* First we compute the type for each byte, as given by the table below.
* This type will be used as an index later on.
*/
/*
* Index Min Max Byte Type
* 0 00 7F Single byte sequence
* 1,2,3 80 BF Second, third and fourth byte for many of the sequences.
* 4 A0 BF Second byte after E0
* 5 80 9F Second byte after ED
* 6 90 BF Second byte after F0
* 7 80 8F Second byte after F4
* 8 C2 F4 First non ASCII byte
* 9..15 7F 80 Invalid byte
*/
/* After the first step we compute the index for all bytes, then we permute
the bytes according to their indices to check the ranges from the range
table.
* The range for a given type can be found in the range_min_table and
range_max_table, the range for type/index X is in range_min_table[X] ...
range_max_table[X].
*/
/* Algorithm:
* Put index zero to all bytes.
* Find all non ASCII characters, give them index 8.
* For each tail byte in a codepoint sequence, give it an index corresponding
to the 1 based index from the end.
* If the first byte of the codepoint is in the [C0...DF] range, we write
index 1 in the following byte.
* If the first byte of the codepoint is in the range [E0...EF], we write
indices 2 and 1 in the next two bytes.
* If the first byte of the codepoint is in the range [F0...FF] we write
indices 3,2,1 into the next three bytes.
* For finding the number of bytes we need to look at high nibbles (4 bits)
and do the lookup from the table, it can be done with shift by 4 + shuffle
instructions. We call it `first_len`.
* Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
* Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
* Again to get the indices of the 4th bytes.
* Take OR of all that 4 values and check within range.
*/
/* For example:
* input C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
* first_len 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 0
* 1st byte 8 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0
* 2nd byte 0 1 0 0 2 0 0 0 3 0 0 0 0 3 0 0 // Shift + sub
* 3rd byte 0 0 0 0 0 1 0 0 0 2 0 0 0 0 2 0 // Shift + sub
* 4th byte 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 // Shift + sub
* Index 8 1 0 8 2 1 0 8 3 2 1 0 8 3 2 1 // OR of results
*/
/* Checking for errors:
* Error checking is done by looking up the high nibble (4 bits) of each byte
against an error checking table.
* Because the lookup value for the second byte depends of the value of the
first byte in codepoint, we use saturated operations to adjust the index.
* Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
match the correct index.
* If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
F4 -> 5
* Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
match the adjustment
* Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
be more 128 and lookup in ef_fe_table will return 0 but for F0
and F4 it will be 4 and 5 accordingly
*/
/*
* Then just check the appropriate ranges with greater/smaller equal
instructions. Check tail with a naive algorithm.
* To save from previous 16 byte checks we just align previous_first_len to
get correct continuations of the codepoints.
*/
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
const __m128i first_len_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
const __m128i first_range_table =
_mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
/*
* Range table, map range index to min and max values
*/
const __m128i range_min_table =
_mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
const __m128i range_max_table =
_mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
/*
* Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
*/
/* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i df_ee_table =
_mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
/* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
// The values represent the adjustment in the Range Index table for a correct
// index.
const __m128i ef_fe_table =
_mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
__m128i prev_input = _mm_set1_epi8(0);
__m128i prev_first_len = _mm_set1_epi8(0);
__m128i error = _mm_set1_epi8(0);
while (end - data >= 16) {
const __m128i input =
_mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
/* high_nibbles = input >> 4 */
const __m128i high_nibbles =
_mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_table[high_nibbles] */
__m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_table[high_nibbles] */
__m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
__m128i tmp1;
__m128i tmp2;
/* tmp1 = saturate_sub(first_len, 1) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
/* tmp2 = saturate_sub(prev_first_len, 1) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
/* range |= (tmp1, tmp2) << 2 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp1 = saturate_sub(first_len, 2) */
tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
/* tmp2 = saturate_sub(prev_first_len, 2) */
tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
/* range |= (tmp1, tmp2) << 3 bytes */
range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
/*
* Now we have below range indices calculated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* >9 for non ascii First Byte overlapping
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* Overlaps lead to index 9~15, which are illegal in range table */
__m128i shift1;
__m128i pos;
__m128i range2;
/* shift1 = (input, prev_input) << 1 byte */
shift1 = _mm_alignr_epi8(input, prev_input, 15);
pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
/*
* shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
* pos: | 0 1 15 | 16 17 239| 240 241 255|
* pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
* pos+112: | 112 113 127| >= 128 | >= 128 |
*/
tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
range = _mm_add_epi8(range, range2);
/* Load min and max values per calculated range index */
__m128i min_range = _mm_shuffle_epi8(range_min_table, range);
__m128i max_range = _mm_shuffle_epi8(range_max_table, range);
/* Check value range */
if (ReturnPosition) {
error = _mm_cmplt_epi8(input, min_range);
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
/* 5% performance drop from this conditional branch */
if (!_mm_testz_si128(error, error)) {
break;
}
} else {
error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
}
prev_input = input;
prev_first_len = first_len;
data += 16;
}
/* If we got to the end, we don't need to skip any bytes backwards */
if (ReturnPosition && (data - (end - len)) == 0) {
return ValidUTF8Span<true>(data, end);
}
/* Find previous codepoint (not 80~BF) */
data -= CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
if (ReturnPosition) {
return (data - (end - len)) + ValidUTF8Span<true>(data, end);
}
/* Test if there was any error */
if (!_mm_testz_si128(error, error)) {
return 0;
}
/* Check the tail */
return ValidUTF8Span<false>(data, end);
#endif
}
} // namespace
bool IsStructurallyValid(absl::string_view str) {
return ValidUTF8</*ReturnPosition=*/false>(str.data(), str.size());
return utf8_range_IsValid(str.data(), str.size());
}
size_t SpanStructurallyValid(absl::string_view str) {
return ValidUTF8</*ReturnPosition=*/true>(str.data(), str.size());
return utf8_range_ValidPrefix(str.data(), str.size());
}
} // namespace utf8_range

View File

@ -7,6 +7,8 @@
#ifndef THIRD_PARTY_UTF8_RANGE_UTF8_VALIDITY_H_
#define THIRD_PARTY_UTF8_RANGE_UTF8_VALIDITY_H_
#include <cstddef>
#include "absl/strings/string_view.h"
namespace utf8_range {

View File

@ -56,26 +56,7 @@ extern const uint8_t upb_utf8_offsets[];
UPB_INLINE
bool _upb_Decoder_VerifyUtf8Inline(const char* ptr, int len) {
const char* end = ptr + len;
// Check 8 bytes at a time for any non-ASCII char.
while (end - ptr >= 8) {
uint64_t data;
memcpy(&data, ptr, 8);
if (data & 0x8080808080808080) goto non_ascii;
ptr += 8;
}
// Check one byte at a time for non-ASCII.
while (ptr < end) {
if (*ptr & 0x80) goto non_ascii;
ptr++;
}
return true;
non_ascii:
return utf8_range2((const unsigned char*)ptr, end - ptr) == 0;
return utf8_range_IsValid(ptr, len);
}
const char* _upb_Decoder_CheckRequired(upb_Decoder* d, const char* ptr,