gcc/libgomp/parallel.c

343 lines
9.3 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

/* Copyright (C) 2005-2024 Free Software Foundation, Inc.
Contributed by Richard Henderson <rth@redhat.com>.
This file is part of the GNU Offloading and Multi Processing Library
(libgomp).
Libgomp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This file handles the (bare) PARALLEL construct. */
#include "libgomp.h"
#include <limits.h>
/* Determine the number of threads to be launched for a PARALLEL construct.
This algorithm is explicitly described in OpenMP 3.0 section 2.4.1.
SPECIFIED is a combination of the NUM_THREADS clause and the IF clause.
If the IF clause is false, SPECIFIED is forced to 1. When NUM_THREADS
is not present, SPECIFIED is 0. */
unsigned
gomp_resolve_num_threads (unsigned specified, unsigned count)
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_task_icv *icv;
unsigned threads_requested, max_num_threads, num_threads;
unsigned long busy;
struct gomp_thread_pool *pool;
icv = gomp_icv (false);
if (specified == 1)
return 1;
if (thr->ts.active_level >= 1
/* Accelerators with fixed thread counts require this to return 1 for
nested parallel regions. */
#if !defined(__AMDGCN__) && !defined(__nvptx__)
&& icv->max_active_levels_var <= 1
#endif
)
return 1;
else if (thr->ts.active_level >= icv->max_active_levels_var)
return 1;
/* If NUM_THREADS not specified, use nthreads_var. */
if (specified == 0)
threads_requested = icv->nthreads_var;
else
threads_requested = specified;
max_num_threads = threads_requested;
/* If dynamic threads are enabled, bound the number of threads
that we launch. */
if (icv->dyn_var)
{
unsigned dyn = gomp_dynamic_max_threads ();
if (dyn < max_num_threads)
max_num_threads = dyn;
/* Optimization for parallel sections. */
if (count && count < max_num_threads)
max_num_threads = count;
}
/* UINT_MAX stands for infinity. */
if (__builtin_expect (icv->thread_limit_var == UINT_MAX, 1)
|| max_num_threads == 1)
return max_num_threads;
/* The threads_busy counter lives in thread_pool, if there
isn't a thread_pool yet, there must be just one thread
in the contention group. If thr->team is NULL, this isn't
nested parallel, so there is just one thread in the
contention group as well, no need to handle it atomically. */
pool = thr->thread_pool;
if (thr->ts.team == NULL || pool == NULL)
{
num_threads = max_num_threads;
if (num_threads > icv->thread_limit_var)
num_threads = icv->thread_limit_var;
if (pool)
pool->threads_busy = num_threads;
return num_threads;
}
#ifdef HAVE_SYNC_BUILTINS
do
{
busy = pool->threads_busy;
num_threads = max_num_threads;
if (icv->thread_limit_var - busy + 1 < num_threads)
num_threads = icv->thread_limit_var - busy + 1;
}
while (__sync_val_compare_and_swap (&pool->threads_busy,
busy, busy + num_threads - 1)
!= busy);
#else
gomp_mutex_lock (&gomp_managed_threads_lock);
num_threads = max_num_threads;
busy = pool->threads_busy;
if (icv->thread_limit_var - busy + 1 < num_threads)
num_threads = icv->thread_limit_var - busy + 1;
pool->threads_busy += num_threads - 1;
gomp_mutex_unlock (&gomp_managed_threads_lock);
#endif
return num_threads;
}
void
GOMP_parallel_start (void (*fn) (void *), void *data, unsigned num_threads)
{
num_threads = gomp_resolve_num_threads (num_threads, 0);
gomp_team_start (fn, data, num_threads, 0, gomp_new_team (num_threads),
NULL);
}
void
GOMP_parallel_end (void)
{
struct gomp_task_icv *icv = gomp_icv (false);
if (__builtin_expect (icv->thread_limit_var != UINT_MAX, 0))
{
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
unsigned int nthreads = team ? team->nthreads : 1;
gomp_team_end ();
if (nthreads > 1)
{
/* If not nested, there is just one thread in the
contention group left, no need for atomicity. */
if (thr->ts.team == NULL)
thr->thread_pool->threads_busy = 1;
else
{
#ifdef HAVE_SYNC_BUILTINS
__sync_fetch_and_add (&thr->thread_pool->threads_busy,
1UL - nthreads);
#else
gomp_mutex_lock (&gomp_managed_threads_lock);
thr->thread_pool->threads_busy -= nthreads - 1;
gomp_mutex_unlock (&gomp_managed_threads_lock);
#endif
}
}
}
else
gomp_team_end ();
}
ialias (GOMP_parallel_end)
void
GOMP_parallel (void (*fn) (void *), void *data, unsigned num_threads,
unsigned int flags)
{
num_threads = gomp_resolve_num_threads (num_threads, 0);
gomp_team_start (fn, data, num_threads, flags, gomp_new_team (num_threads),
NULL);
fn (data);
ialias_call (GOMP_parallel_end) ();
}
unsigned
GOMP_parallel_reductions (void (*fn) (void *), void *data,
unsigned num_threads, unsigned int flags)
{
struct gomp_taskgroup *taskgroup;
num_threads = gomp_resolve_num_threads (num_threads, 0);
uintptr_t *rdata = *(uintptr_t **)data;
taskgroup = gomp_parallel_reduction_register (rdata, num_threads);
gomp_team_start (fn, data, num_threads, flags, gomp_new_team (num_threads),
taskgroup);
fn (data);
ialias_call (GOMP_parallel_end) ();
gomp_sem_destroy (&taskgroup->taskgroup_sem);
free (taskgroup);
return num_threads;
}
bool
GOMP_cancellation_point (int which)
{
if (!gomp_cancel_var)
return false;
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
if (which & (GOMP_CANCEL_LOOP | GOMP_CANCEL_SECTIONS))
{
if (team == NULL)
return false;
return team->work_share_cancelled != 0;
}
else if (which & GOMP_CANCEL_TASKGROUP)
{
if (thr->task->taskgroup)
{
if (thr->task->taskgroup->cancelled)
return true;
if (thr->task->taskgroup->workshare
&& thr->task->taskgroup->prev
&& thr->task->taskgroup->prev->cancelled)
return true;
}
/* FALLTHRU into the GOMP_CANCEL_PARALLEL case,
as #pragma omp cancel parallel also cancels all explicit
tasks. */
}
if (team)
return gomp_team_barrier_cancelled (&team->barrier);
return false;
}
ialias (GOMP_cancellation_point)
bool
GOMP_cancel (int which, bool do_cancel)
{
if (!gomp_cancel_var)
return false;
if (!do_cancel)
return ialias_call (GOMP_cancellation_point) (which);
struct gomp_thread *thr = gomp_thread ();
struct gomp_team *team = thr->ts.team;
if (which & (GOMP_CANCEL_LOOP | GOMP_CANCEL_SECTIONS))
{
/* In orphaned worksharing region, all we want to cancel
is current thread. */
if (team != NULL)
team->work_share_cancelled = 1;
return true;
}
else if (which & GOMP_CANCEL_TASKGROUP)
{
if (thr->task->taskgroup)
{
struct gomp_taskgroup *taskgroup = thr->task->taskgroup;
if (taskgroup->workshare && taskgroup->prev)
taskgroup = taskgroup->prev;
if (!taskgroup->cancelled)
{
gomp_mutex_lock (&team->task_lock);
taskgroup->cancelled = true;
gomp_mutex_unlock (&team->task_lock);
}
}
return true;
}
team->team_cancelled = 1;
gomp_team_barrier_cancel (team);
return true;
}
/* The public OpenMP API for thread and team related inquiries. */
int
omp_get_num_threads (void)
{
struct gomp_team *team = gomp_thread ()->ts.team;
return team ? team->nthreads : 1;
}
int
omp_get_thread_num (void)
{
return gomp_thread ()->ts.team_id;
}
/* This wasn't right for OpenMP 2.5. Active region used to be non-zero
when the IF clause doesn't evaluate to false, starting with OpenMP 3.0
it is non-zero with more than one thread in the team. */
int
omp_in_parallel (void)
{
return gomp_thread ()->ts.active_level > 0;
}
int
omp_get_level (void)
{
return gomp_thread ()->ts.level;
}
int
omp_get_ancestor_thread_num (int level)
{
struct gomp_team_state *ts = &gomp_thread ()->ts;
if (level < 0 || level > ts->level)
return -1;
for (level = ts->level - level; level > 0; --level)
ts = &ts->team->prev_ts;
return ts->team_id;
}
int
omp_get_team_size (int level)
{
struct gomp_team_state *ts = &gomp_thread ()->ts;
if (level < 0 || level > ts->level)
return -1;
for (level = ts->level - level; level > 0; --level)
ts = &ts->team->prev_ts;
if (ts->team == NULL)
return 1;
else
return ts->team->nthreads;
}
int
omp_get_active_level (void)
{
return gomp_thread ()->ts.active_level;
}
ialias (omp_get_num_threads)
ialias (omp_get_thread_num)
ialias (omp_in_parallel)
ialias (omp_get_level)
ialias (omp_get_ancestor_thread_num)
ialias (omp_get_team_size)
ialias (omp_get_active_level)