gcc/gcc/tree-complex.cc

1986 lines
55 KiB
C++
Raw Permalink Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

/* Lower complex number operations to scalar operations.
Copyright (C) 2004-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "tree-hasher.h"
#include "cfgloop.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "diagnostic-core.h"
/* For each complex ssa name, a lattice value. We're interested in finding
out whether a complex number is degenerate in some way, having only real
or only complex parts. */
enum
{
UNINITIALIZED = 0,
ONLY_REAL = 1,
ONLY_IMAG = 2,
VARYING = 3
};
/* The type complex_lattice_t holds combinations of the above
constants. */
typedef int complex_lattice_t;
#define PAIR(a, b) ((a) << 2 | (b))
class complex_propagate : public ssa_propagation_engine
{
enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) final override;
enum ssa_prop_result visit_phi (gphi *) final override;
};
static vec<complex_lattice_t> complex_lattice_values;
/* For each complex variable, a pair of variables for the components exists in
the hashtable. */
static int_tree_htab_type *complex_variable_components;
/* For each complex SSA_NAME, a pair of ssa names for the components. */
static vec<tree> complex_ssa_name_components;
/* Vector of PHI triplets (original complex PHI and corresponding real and
imag PHIs if real and/or imag PHIs contain temporarily
non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
static vec<gphi *> phis_to_revisit;
/* BBs that need EH cleanup. */
static bitmap need_eh_cleanup;
/* Lookup UID in the complex_variable_components hashtable and return the
associated tree. */
static tree
cvc_lookup (unsigned int uid)
{
struct int_tree_map in;
in.uid = uid;
return complex_variable_components->find_with_hash (in, uid).to;
}
/* Insert the pair UID, TO into the complex_variable_components hashtable. */
static void
cvc_insert (unsigned int uid, tree to)
{
int_tree_map h;
int_tree_map *loc;
h.uid = uid;
loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
loc->uid = uid;
loc->to = to;
}
/* Return true if T is not a zero constant. In the case of real values,
we're only interested in +0.0. */
static int
some_nonzerop (tree t)
{
int zerop = false;
/* Operations with real or imaginary part of a complex number zero
cannot be treated the same as operations with a real or imaginary
operand if we care about the signs of zeros in the result. */
if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
else if (TREE_CODE (t) == FIXED_CST)
zerop = fixed_zerop (t);
else if (TREE_CODE (t) == INTEGER_CST)
zerop = integer_zerop (t);
return !zerop;
}
/* Compute a lattice value from the components of a complex type REAL
and IMAG. */
static complex_lattice_t
find_lattice_value_parts (tree real, tree imag)
{
int r, i;
complex_lattice_t ret;
r = some_nonzerop (real);
i = some_nonzerop (imag);
ret = r * ONLY_REAL + i * ONLY_IMAG;
/* ??? On occasion we could do better than mapping 0+0i to real, but we
certainly don't want to leave it UNINITIALIZED, which eventually gets
mapped to VARYING. */
if (ret == UNINITIALIZED)
ret = ONLY_REAL;
return ret;
}
/* Compute a lattice value from gimple_val T. */
static complex_lattice_t
find_lattice_value (tree t)
{
tree real, imag;
switch (TREE_CODE (t))
{
case SSA_NAME:
return complex_lattice_values[SSA_NAME_VERSION (t)];
case COMPLEX_CST:
real = TREE_REALPART (t);
imag = TREE_IMAGPART (t);
break;
default:
gcc_unreachable ();
}
return find_lattice_value_parts (real, imag);
}
/* Determine if LHS is something for which we're interested in seeing
simulation results. */
static bool
is_complex_reg (tree lhs)
{
return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
}
/* Mark the incoming parameters to the function as VARYING. */
static void
init_parameter_lattice_values (void)
{
tree parm, ssa_name;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
if (is_complex_reg (parm)
&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
}
/* Initialize simulation state for each statement. Return false if we
found no statements we want to simulate, and thus there's nothing
for the entire pass to do. */
static bool
init_dont_simulate_again (void)
{
basic_block bb;
bool saw_a_complex_op = false;
FOR_EACH_BB_FN (bb, cfun)
{
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
prop_set_simulate_again (phi,
is_complex_reg (gimple_phi_result (phi)));
}
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt;
tree op0, op1;
bool sim_again_p;
stmt = gsi_stmt (gsi);
op0 = op1 = NULL_TREE;
/* Most control-altering statements must be initially
simulated, else we won't cover the entire cfg. */
sim_again_p = stmt_ends_bb_p (stmt);
switch (gimple_code (stmt))
{
case GIMPLE_CALL:
if (gimple_call_lhs (stmt))
sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
break;
case GIMPLE_ASSIGN:
sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
else
op0 = gimple_assign_rhs1 (stmt);
if (gimple_num_ops (stmt) > 2)
op1 = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_COND:
op0 = gimple_cond_lhs (stmt);
op1 = gimple_cond_rhs (stmt);
break;
default:
break;
}
if (op0 || op1)
switch (gimple_expr_code (stmt))
{
case EQ_EXPR:
case NE_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
/* The total store transformation performed during
gimplification creates such uninitialized loads
and we need to lower the statement to be able
to fix things up. */
if (TREE_CODE (op0) == SSA_NAME
&& ssa_undefined_value_p (op0))
saw_a_complex_op = true;
break;
default:
/* When expand_complex_move would trigger make sure we
perform lowering even when there is no actual complex
operation. This helps consistency and vectorization. */
if (TREE_CODE (TREE_TYPE (gimple_op (stmt, 0))) == COMPLEX_TYPE)
saw_a_complex_op = true;
break;
}
prop_set_simulate_again (stmt, sim_again_p);
}
}
return saw_a_complex_op;
}
/* Evaluate statement STMT against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
tree *result_p)
{
complex_lattice_t new_l, old_l, op1_l, op2_l;
unsigned int ver;
tree lhs;
lhs = gimple_get_lhs (stmt);
/* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* These conditions should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (lhs) == SSA_NAME);
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
*result_p = lhs;
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
switch (gimple_expr_code (stmt))
{
case SSA_NAME:
case COMPLEX_CST:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
case COMPLEX_EXPR:
new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt));
break;
case PLUS_EXPR:
case MINUS_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* We've set up the lattice values such that IOR neatly
models addition. */
new_l = op1_l | op2_l;
break;
case MULT_EXPR:
case RDIV_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
/* Obviously, if either varies, so does the result. */
if (op1_l == VARYING || op2_l == VARYING)
new_l = VARYING;
/* Don't prematurely promote variables if we've not yet seen
their inputs. */
else if (op1_l == UNINITIALIZED)
new_l = op2_l;
else if (op2_l == UNINITIALIZED)
new_l = op1_l;
else
{
/* At this point both numbers have only one component. If the
numbers are of opposite kind, the result is imaginary,
otherwise the result is real. The add/subtract translates
the real/imag from/to 0/1; the ^ performs the comparison. */
new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
/* Don't allow the lattice value to flip-flop indefinitely. */
new_l |= old_l;
}
break;
case NEGATE_EXPR:
case CONJ_EXPR:
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
break;
default:
new_l = VARYING;
break;
}
/* If nothing changed this round, let the propagator know. */
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Evaluate a PHI node against the complex lattice defined above. */
enum ssa_prop_result
complex_propagate::visit_phi (gphi *phi)
{
complex_lattice_t new_l, old_l;
unsigned int ver;
tree lhs;
int i;
lhs = gimple_phi_result (phi);
/* This condition should be satisfied due to the initial filter
set up in init_dont_simulate_again. */
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
return SSA_PROP_VARYING;
/* We've set up the lattice values such that IOR neatly models PHI meet. */
new_l = UNINITIALIZED;
for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
ver = SSA_NAME_VERSION (lhs);
old_l = complex_lattice_values[ver];
if (new_l == old_l)
return SSA_PROP_NOT_INTERESTING;
complex_lattice_values[ver] = new_l;
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
}
/* Create one backing variable for a complex component of ORIG. */
static tree
create_one_component_var (tree type, tree orig, const char *prefix,
const char *suffix, enum tree_code code)
{
tree r = create_tmp_var (type, prefix);
DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
DECL_ARTIFICIAL (r) = 1;
if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
{
const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
name = ACONCAT ((name, suffix, NULL));
DECL_NAME (r) = get_identifier (name);
SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
DECL_HAS_DEBUG_EXPR_P (r) = 1;
DECL_IGNORED_P (r) = 0;
copy_warning (r, orig);
}
else
{
DECL_IGNORED_P (r) = 1;
suppress_warning (r);
}
return r;
}
/* Retrieve a value for a complex component of VAR. */
static tree
get_component_var (tree var, bool imag_p)
{
size_t decl_index = DECL_UID (var) * 2 + imag_p;
tree ret = cvc_lookup (decl_index);
if (ret == NULL)
{
ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
imag_p ? "CI" : "CR",
imag_p ? "$imag" : "$real",
imag_p ? IMAGPART_EXPR : REALPART_EXPR);
cvc_insert (decl_index, ret);
}
return ret;
}
/* Retrieve a value for a complex component of SSA_NAME. */
static tree
get_component_ssa_name (tree ssa_name, bool imag_p)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree ret;
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
{
tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
if (SCALAR_FLOAT_TYPE_P (inner_type))
return build_real (inner_type, dconst0);
else
return build_int_cst (inner_type, 0);
}
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
ret = complex_ssa_name_components[ssa_name_index];
if (ret == NULL)
{
if (SSA_NAME_VAR (ssa_name))
ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
else
ret = TREE_TYPE (TREE_TYPE (ssa_name));
ret = make_ssa_name (ret);
/* Copy some properties from the original. In particular, whether it
is used in an abnormal phi, and whether it's uninitialized. */
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
&& VAR_P (SSA_NAME_VAR (ssa_name)))
{
SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
}
complex_ssa_name_components[ssa_name_index] = ret;
}
return ret;
}
/* Set a value for a complex component of SSA_NAME, return a
gimple_seq of stuff that needs doing. */
static gimple_seq
set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
{
complex_lattice_t lattice = find_lattice_value (ssa_name);
size_t ssa_name_index;
tree comp;
gimple *last;
gimple_seq list;
/* We know the value must be zero, else there's a bug in our lattice
analysis. But the value may well be a variable known to contain
zero. We should be safe ignoring it. */
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
return NULL;
/* If we've already assigned an SSA_NAME to this component, then this
means that our walk of the basic blocks found a use before the set.
This is fine. Now we should create an initialization for the value
we created earlier. */
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
comp = complex_ssa_name_components[ssa_name_index];
if (comp)
;
/* If we've nothing assigned, and the value we're given is already stable,
then install that as the value for this SSA_NAME. This preemptively
copy-propagates the value, which avoids unnecessary memory allocation. */
else if (is_gimple_min_invariant (value)
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
else if (TREE_CODE (value) == SSA_NAME
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
{
/* Replace an anonymous base value with the variable from cvc_lookup.
This should result in better debug info. */
if (!SSA_NAME_IS_DEFAULT_DEF (value)
&& SSA_NAME_VAR (ssa_name)
&& (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
&& !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
{
comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
replace_ssa_name_symbol (value, comp);
}
complex_ssa_name_components[ssa_name_index] = value;
return NULL;
}
/* Finally, we need to stabilize the result by installing the value into
a new ssa name. */
else
comp = get_component_ssa_name (ssa_name, imag_p);
/* Do all the work to assign VALUE to COMP. */
list = NULL;
value = force_gimple_operand (value, &list, false, NULL);
last = gimple_build_assign (comp, value);
gimple_seq_add_stmt (&list, last);
gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
return list;
}
/* Extract the real or imaginary part of a complex variable or constant.
Make sure that it's a proper gimple_val and gimplify it if not.
Emit any new code before gsi. */
static tree
extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
bool gimple_p, bool phiarg_p = false)
{
switch (TREE_CODE (t))
{
case COMPLEX_CST:
return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
case COMPLEX_EXPR:
gcc_unreachable ();
case BIT_FIELD_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = unshare_expr (t);
TREE_TYPE (t) = inner_type;
TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
if (imagpart_p)
TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
TYPE_SIZE (inner_type));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case VAR_DECL:
case RESULT_DECL:
case PARM_DECL:
case COMPONENT_REF:
case ARRAY_REF:
case VIEW_CONVERT_EXPR:
case MEM_REF:
{
tree inner_type = TREE_TYPE (TREE_TYPE (t));
t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
inner_type, unshare_expr (t));
if (gimple_p)
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
GSI_SAME_STMT);
return t;
}
case SSA_NAME:
t = get_component_ssa_name (t, imagpart_p);
if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
gcc_assert (phiarg_p);
return t;
default:
gcc_unreachable ();
}
}
/* Update the complex components of the ssa name on the lhs of STMT. */
static void
update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
tree i)
{
tree lhs;
gimple_seq list;
lhs = gimple_get_lhs (stmt);
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
static void
update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
{
gimple_seq list;
list = set_component_ssa_name (lhs, false, r);
if (list)
gsi_insert_seq_on_edge (e, list);
list = set_component_ssa_name (lhs, true, i);
if (list)
gsi_insert_seq_on_edge (e, list);
}
/* Update an assignment to a complex variable in place. */
static void
update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
gimple *stmt = gsi_stmt (*gsi);
update_stmt (stmt);
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
update_complex_components (gsi, gsi_stmt (*gsi), r, i);
}
/* Generate code at the entry point of the function to initialize the
component variables for a complex parameter. */
static void
update_parameter_components (void)
{
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
tree parm;
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
{
tree type = TREE_TYPE (parm);
tree ssa_name, r, i;
if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
continue;
type = TREE_TYPE (type);
ssa_name = ssa_default_def (cfun, parm);
if (!ssa_name)
continue;
r = build1 (REALPART_EXPR, type, ssa_name);
i = build1 (IMAGPART_EXPR, type, ssa_name);
update_complex_components_on_edge (entry_edge, ssa_name, r, i);
}
}
/* Generate code to set the component variables of a complex variable
to match the PHI statements in block BB. */
static void
update_phi_components (basic_block bb)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (is_complex_reg (gimple_phi_result (phi)))
{
gphi *p[2] = { NULL, NULL };
unsigned int i, j, n;
bool revisit_phi = false;
for (j = 0; j < 2; j++)
{
tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
if (TREE_CODE (l) == SSA_NAME)
p[j] = create_phi_node (l, bb);
}
for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
{
tree comp, arg = gimple_phi_arg_def (phi, i);
for (j = 0; j < 2; j++)
if (p[j])
{
comp = extract_component (NULL, arg, j > 0, false, true);
if (TREE_CODE (comp) == SSA_NAME
&& SSA_NAME_DEF_STMT (comp) == NULL)
{
/* For the benefit of any gimple simplification during
this pass that might walk SSA_NAME def stmts,
don't add SSA_NAMEs without definitions into the
PHI arguments, but put a decl in there instead
temporarily, and revisit this PHI later on. */
if (SSA_NAME_VAR (comp))
comp = SSA_NAME_VAR (comp);
else
comp = create_tmp_reg (TREE_TYPE (comp),
get_name (comp));
revisit_phi = true;
}
SET_PHI_ARG_DEF (p[j], i, comp);
}
}
if (revisit_phi)
{
phis_to_revisit.safe_push (phi);
phis_to_revisit.safe_push (p[0]);
phis_to_revisit.safe_push (p[1]);
}
}
}
}
/* Expand a complex move to scalars. */
static void
expand_complex_move (gimple_stmt_iterator *gsi, tree type)
{
tree inner_type = TREE_TYPE (type);
tree r, i, lhs, rhs;
gimple *stmt = gsi_stmt (*gsi);
if (is_gimple_assign (stmt))
{
lhs = gimple_assign_lhs (stmt);
if (gimple_num_ops (stmt) == 2)
rhs = gimple_assign_rhs1 (stmt);
else
rhs = NULL_TREE;
}
else if (is_gimple_call (stmt))
{
lhs = gimple_call_lhs (stmt);
rhs = NULL_TREE;
}
else
gcc_unreachable ();
if (TREE_CODE (lhs) == SSA_NAME)
{
if (is_ctrl_altering_stmt (stmt))
{
edge e;
/* The value is not assigned on the exception edges, so we need not
concern ourselves there. We do need to update on the fallthru
edge. Find it. */
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
if (!e)
gcc_unreachable ();
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components_on_edge (e, lhs, r, i);
}
else if (is_gimple_call (stmt)
|| gimple_has_side_effects (stmt)
|| gimple_assign_rhs_code (stmt) == PAREN_EXPR)
{
r = build1 (REALPART_EXPR, inner_type, lhs);
i = build1 (IMAGPART_EXPR, inner_type, lhs);
update_complex_components (gsi, stmt, r, i);
}
else
{
if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
{
r = extract_component (gsi, rhs, 0, true);
i = extract_component (gsi, rhs, 1, true);
}
else
{
r = gimple_assign_rhs1 (stmt);
i = gimple_assign_rhs2 (stmt);
}
update_complex_assignment (gsi, r, i);
}
}
else if (rhs
&& (TREE_CODE (rhs) == SSA_NAME || TREE_CODE (rhs) == COMPLEX_CST)
&& !TREE_SIDE_EFFECTS (lhs))
{
tree x;
gimple *t;
location_t loc;
loc = gimple_location (stmt);
r = extract_component (gsi, rhs, 0, false);
i = extract_component (gsi, rhs, 1, false);
x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, r);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
if (stmt == gsi_stmt (*gsi))
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
gimple_assign_set_lhs (stmt, x);
gimple_assign_set_rhs1 (stmt, i);
}
else
{
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
t = gimple_build_assign (x, i);
gimple_set_location (t, loc);
gsi_insert_before (gsi, t, GSI_SAME_STMT);
stmt = gsi_stmt (*gsi);
gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
}
update_stmt (stmt);
}
}
/* Expand complex addition to scalars:
a + b = (ar + br) + i(ai + bi)
a - b = (ar - br) + i(ai + bi)
*/
static void
expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ar;
if (code == MINUS_EXPR)
ri = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, bi);
else
ri = bi;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
if (code == MINUS_EXPR)
rr = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ar, br);
else
rr = br;
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (VARYING, ONLY_IMAG):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (ONLY_REAL, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = bi;
break;
case PAIR (ONLY_IMAG, VARYING):
if (code == MINUS_EXPR)
goto general;
rr = br;
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
case PAIR (VARYING, VARYING):
general:
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = gimple_build (&stmts, loc, code, inner_type, ai, bi);
break;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand a complex multiplication or division to a libcall to the c99
compliant routines. TYPE is the complex type of the operation.
If INPLACE_P replace the statement at GSI with
the libcall and return NULL_TREE. Else insert the call, assign its
result to an output variable and return that variable. If INPLACE_P
is true then the statement being replaced should be an assignment
statement. */
static tree
expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
tree br, tree bi, enum tree_code code, bool inplace_p)
{
machine_mode mode;
enum built_in_function bcode;
tree fn, lhs;
gcall *stmt;
mode = TYPE_MODE (type);
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
if (code == MULT_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else if (code == RDIV_EXPR)
bcode = ((enum built_in_function)
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
else
gcc_unreachable ();
fn = builtin_decl_explicit (bcode);
stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
if (inplace_p)
{
gimple *old_stmt = gsi_stmt (*gsi);
gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
lhs = gimple_assign_lhs (old_stmt);
gimple_call_set_lhs (stmt, lhs);
gsi_replace (gsi, stmt, true);
type = TREE_TYPE (type);
if (stmt_can_throw_internal (cfun, stmt))
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
if (!(e->flags & EDGE_EH))
break;
basic_block bb = split_edge (e);
gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
update_complex_components (&gsi2, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
return NULL_TREE;
}
else
update_complex_components (gsi, stmt,
build1 (REALPART_EXPR, type, lhs),
build1 (IMAGPART_EXPR, type, lhs));
SSA_NAME_DEF_STMT (lhs) = stmt;
return NULL_TREE;
}
gimple_call_set_nothrow (stmt, true);
lhs = make_ssa_name (type);
gimple_call_set_lhs (stmt, lhs);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
return lhs;
}
/* Perform a complex multiplication on two complex constants A, B represented
by AR, AI, BR, BI of type TYPE.
The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
Insert the GIMPLE statements into GSI. Store the real and imaginary
components of the result into RR and RI. */
static void
expand_complex_multiplication_components (gimple_seq *stmts, location_t loc,
tree type, tree ar, tree ai,
tree br, tree bi,
tree *rr, tree *ri)
{
tree t1, t2, t3, t4;
t1 = gimple_build (stmts, loc, MULT_EXPR, type, ar, br);
t2 = gimple_build (stmts, loc, MULT_EXPR, type, ai, bi);
t3 = gimple_build (stmts, loc, MULT_EXPR, type, ar, bi);
/* Avoid expanding redundant multiplication for the common
case of squaring a complex number. */
if (ar == br && ai == bi)
t4 = t3;
else
t4 = gimple_build (stmts, loc, MULT_EXPR, type, ai, br);
*rr = gimple_build (stmts, loc, MINUS_EXPR, type, t1, t2);
*ri = gimple_build (stmts, loc, PLUS_EXPR, type, t3, t4);
}
/* Expand complex multiplication to scalars:
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
*/
static void
expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
tree inner_type = TREE_TYPE (type);
location_t loc = gimple_location (gsi_stmt (*gsi));
gimple_seq stmts = NULL;
if (al < bl)
{
complex_lattice_t tl;
rr = ar, ar = br, br = rr;
ri = ai, ai = bi, bi = ri;
tl = al, al = bl, bl = tl;
}
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
if (TREE_CODE (ai) == REAL_CST
&& real_identical (&TREE_REAL_CST (ai), &dconst1))
ri = br;
else
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, rr);
ri = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
break;
case PAIR (VARYING, VARYING):
if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
{
/* If optimizing for size or not at all just do a libcall.
Same if there are exception-handling edges or signaling NaNs. */
if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
|| stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
|| flag_signaling_nans)
{
expand_complex_libcall (gsi, type, ar, ai, br, bi,
MULT_EXPR, true);
return;
}
if (!HONOR_NANS (inner_type))
{
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (&stmts, loc, inner_type,
ar, ai, br, bi,
&rr, &ri);
break;
}
/* Else, expand x = a * b into
x = (ar*br - ai*bi) + i(ar*bi + br*ai);
if (isunordered (__real__ x, __imag__ x))
x = __muldc3 (a, b); */
tree tmpr, tmpi;
expand_complex_multiplication_components (&stmts, loc,
inner_type, ar, ai,
br, bi, &tmpr, &tmpi);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
gimple *check
= gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
NULL_TREE, NULL_TREE);
basic_block orig_bb = gsi_bb (*gsi);
/* We want to keep track of the original complex multiplication
statement as we're going to modify it later in
update_complex_assignment. Make sure that insert_cond_bb leaves
that statement in the join block. */
gsi_prev (gsi);
basic_block cond_bb
= insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
profile_probability::very_unlikely ());
gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
tree libcall_res
= expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
bi, MULT_EXPR, false);
gimple_seq stmts2 = NULL;
tree cond_real = gimple_build (&stmts2, loc, REALPART_EXPR,
inner_type, libcall_res);
tree cond_imag = gimple_build (&stmts2, loc, IMAGPART_EXPR,
inner_type, libcall_res);
gsi_insert_seq_before (&cond_bb_gsi, stmts2, GSI_SAME_STMT);
basic_block join_bb = single_succ_edge (cond_bb)->dest;
*gsi = gsi_start_nondebug_after_labels_bb (join_bb);
/* We have a conditional block with some assignments in cond_bb.
Wire up the PHIs to wrap up. */
rr = make_ssa_name (inner_type);
ri = make_ssa_name (inner_type);
edge cond_to_join = single_succ_edge (cond_bb);
edge orig_to_join = find_edge (orig_bb, join_bb);
gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
}
else
/* If we are not worrying about NaNs expand to
(ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
expand_complex_multiplication_components (&stmts, loc,
inner_type, ar, ai,
br, bi, &rr, &ri);
break;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.cc:const_binop().
Expand complex division to scalars, straightforward algorithm.
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
t = br*br + bi*bi
*/
static void
expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
tree rr, ri, div, t1, t2, t3;
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, bi);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, bi);
t3 = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, t2);
rr = gimple_build (&stmts, loc, code, inner_type, t3, div);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, br);
t2 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, bi);
t3 = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, t2);
ri = gimple_build (&stmts, loc, code, inner_type, t3, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Keep this algorithm in sync with fold-const.cc:const_binop().
Expand complex division to scalars, modified algorithm to minimize
overflow with wide input ranges. */
static void
expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code)
{
tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
basic_block bb_cond, bb_true, bb_false, bb_join;
gimple *stmt;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
/* Examine |br| < |bi|, and branch. */
t1 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, br);
t2 = gimple_build (&stmts, loc, ABS_EXPR, inner_type, bi);
compare = gimple_build (&stmts, loc,
LT_EXPR, boolean_type_node, t1, t2);
bb_cond = bb_true = bb_false = bb_join = NULL;
rr = ri = tr = ti = NULL;
if (TREE_CODE (compare) != INTEGER_CST)
{
edge e;
gimple *stmt;
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
stmt = gimple_build_cond (NE_EXPR, compare, boolean_false_node,
NULL_TREE, NULL_TREE);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
/* Split the original block, and create the TRUE and FALSE blocks. */
e = split_block (gsi_bb (*gsi), stmt);
bb_cond = e->src;
bb_join = e->dest;
bb_true = create_empty_bb (bb_cond);
bb_false = create_empty_bb (bb_true);
bb_true->count = bb_false->count
= bb_cond->count.apply_probability (profile_probability::even ());
/* Wire the blocks together. */
e->flags = EDGE_TRUE_VALUE;
/* TODO: With value profile we could add an historgram to determine real
branch outcome. */
e->probability = profile_probability::even ();
redirect_edge_succ (e, bb_true);
edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
e2->probability = profile_probability::even ();
make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
add_bb_to_loop (bb_true, bb_cond->loop_father);
add_bb_to_loop (bb_false, bb_cond->loop_father);
/* Update dominance info. Note that bb_join's data was
updated by split_block. */
if (dom_info_available_p (CDI_DOMINATORS))
{
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
}
rr = create_tmp_reg (inner_type);
ri = create_tmp_reg (inner_type);
}
else
{
gimple_seq_discard (stmts);
stmts = NULL;
}
/* In the TRUE branch, we compute
ratio = br/bi;
div = (br * ratio) + bi;
tr = (ar * ratio) + ai;
ti = (ai * ratio) - ar;
tr = tr / div;
ti = ti / div; */
if (bb_true || integer_nonzerop (compare))
{
if (bb_true)
{
*gsi = gsi_last_bb (bb_true);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimple_build (&stmts, loc, code, inner_type, br, bi);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, br, ratio);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, bi);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ai);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, t1, ar);
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
if (bb_true)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
/* In the FALSE branch, we compute
ratio = d/c;
divisor = (d * ratio) + c;
tr = (b * ratio) + a;
ti = b - (a * ratio);
tr = tr / div;
ti = ti / div; */
if (bb_false || integer_zerop (compare))
{
if (bb_false)
{
*gsi = gsi_last_bb (bb_false);
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
}
ratio = gimple_build (&stmts, loc, code, inner_type, bi, br);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, bi, ratio);
div = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, br);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ai, ratio);
tr = gimple_build (&stmts, loc, PLUS_EXPR, inner_type, t1, ar);
t1 = gimple_build (&stmts, loc, MULT_EXPR, inner_type, ar, ratio);
ti = gimple_build (&stmts, loc, MINUS_EXPR, inner_type, ai, t1);
tr = gimple_build (&stmts, loc, code, inner_type, tr, div);
ti = gimple_build (&stmts, loc, code, inner_type, ti, div);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
if (bb_false)
{
stmt = gimple_build_assign (rr, tr);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (ri, ti);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
gsi_remove (gsi, true);
}
}
if (bb_join)
*gsi = gsi_start_bb (bb_join);
else
rr = tr, ri = ti;
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex division to scalars. */
static void
expand_complex_division (gimple_stmt_iterator *gsi, tree type,
tree ar, tree ai, tree br, tree bi,
enum tree_code code,
complex_lattice_t al, complex_lattice_t bl)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
tree inner_type = TREE_TYPE (type);
switch (PAIR (al, bl))
{
case PAIR (ONLY_REAL, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = ai;
break;
case PAIR (ONLY_REAL, ONLY_IMAG):
rr = ai;
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_IMAG, ONLY_REAL):
rr = ar;
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
break;
case PAIR (ONLY_IMAG, ONLY_IMAG):
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
ri = ar;
break;
case PAIR (VARYING, ONLY_REAL):
rr = gimple_build (&stmts, loc, code, inner_type, ar, br);
ri = gimple_build (&stmts, loc, code, inner_type, ai, br);
break;
case PAIR (VARYING, ONLY_IMAG):
rr = gimple_build (&stmts, loc, code, inner_type, ai, bi);
ri = gimple_build (&stmts, loc, code, inner_type, ar, bi);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ri);
break;
case PAIR (ONLY_REAL, VARYING):
case PAIR (ONLY_IMAG, VARYING):
case PAIR (VARYING, VARYING):
switch (flag_complex_method)
{
case 0:
/* straightforward implementation of complex divide acceptable. */
expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
break;
case 2:
if (SCALAR_FLOAT_TYPE_P (inner_type))
{
expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
break;
}
/* FALLTHRU */
case 1:
/* wide ranges of inputs must work for complex divide. */
expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
return;
default:
gcc_unreachable ();
}
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex negation to scalars:
-a = (-ar) + i(-ai)
*/
static void
expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree rr, ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
rr = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ar);
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, rr, ri);
}
/* Expand complex conjugate to scalars:
~a = (ar) + i(-ai)
*/
static void
expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
tree ar, tree ai)
{
tree ri;
gimple_seq stmts = NULL;
location_t loc = gimple_location (gsi_stmt (*gsi));
ri = gimple_build (&stmts, loc, NEGATE_EXPR, inner_type, ai);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
update_complex_assignment (gsi, ar, ri);
}
/* Expand complex comparison (EQ or NE only). */
static void
expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
tree br, tree bi, enum tree_code code)
{
tree cr, ci, cc, type;
gimple *stmt = gsi_stmt (*gsi);
gimple_seq stmts = NULL;
location_t loc = gimple_location (stmt);
cr = gimple_build (&stmts, loc, code, boolean_type_node, ar, br);
ci = gimple_build (&stmts, loc, code, boolean_type_node, ai, bi);
cc = gimple_build (&stmts, loc,
(code == EQ_EXPR ? BIT_AND_EXPR : BIT_IOR_EXPR),
boolean_type_node, cr, ci);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
{
greturn *return_stmt = as_a <greturn *> (stmt);
type = TREE_TYPE (gimple_return_retval (return_stmt));
gimple_return_set_retval (return_stmt, fold_convert (type, cc));
}
break;
case GIMPLE_ASSIGN:
type = TREE_TYPE (gimple_assign_lhs (stmt));
gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
stmt = gsi_stmt (*gsi);
break;
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
gimple_cond_set_code (cond_stmt, EQ_EXPR);
gimple_cond_set_lhs (cond_stmt, cc);
gimple_cond_set_rhs (cond_stmt, boolean_true_node);
}
break;
default:
gcc_unreachable ();
}
update_stmt (stmt);
if (maybe_clean_eh_stmt (stmt))
bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
}
/* Expand inline asm that sets some complex SSA_NAMEs. */
static void
expand_complex_asm (gimple_stmt_iterator *gsi)
{
gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
unsigned int i;
bool diagnosed_p = false;
for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
{
tree link = gimple_asm_output_op (stmt, i);
tree op = TREE_VALUE (link);
if (TREE_CODE (op) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
{
if (gimple_asm_nlabels (stmt) > 0)
{
if (!diagnosed_p)
{
sorry_at (gimple_location (stmt),
"%<asm goto%> with complex typed outputs");
diagnosed_p = true;
}
/* Make sure to not ICE later, see PR105165. */
tree zero = build_zero_cst (TREE_TYPE (TREE_TYPE (op)));
set_component_ssa_name (op, false, zero);
set_component_ssa_name (op, true, zero);
continue;
}
tree type = TREE_TYPE (op);
tree inner_type = TREE_TYPE (type);
tree r = build1 (REALPART_EXPR, inner_type, op);
tree i = build1 (IMAGPART_EXPR, inner_type, op);
gimple_seq list = set_component_ssa_name (op, false, r);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
list = set_component_ssa_name (op, true, i);
if (list)
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
}
}
}
/* Process one statement. If we identify a complex operation, expand it. */
static void
expand_complex_operations_1 (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree type, inner_type, lhs;
tree ac, ar, ai, bc, br, bi;
complex_lattice_t al, bl;
enum tree_code code;
if (gimple_code (stmt) == GIMPLE_ASM)
{
expand_complex_asm (gsi);
return;
}
lhs = gimple_get_lhs (stmt);
if (!lhs && gimple_code (stmt) != GIMPLE_COND)
return;
type = TREE_TYPE (gimple_op (stmt, 0));
code = gimple_expr_code (stmt);
/* Initial filter for operations we handle. */
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
case NEGATE_EXPR:
case CONJ_EXPR:
if (TREE_CODE (type) != COMPLEX_TYPE)
return;
inner_type = TREE_TYPE (type);
break;
case EQ_EXPR:
case NE_EXPR:
/* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
subcode, so we need to access the operands using gimple_op. */
inner_type = TREE_TYPE (gimple_op (stmt, 1));
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
return;
break;
default:
{
tree rhs;
/* GIMPLE_COND may also fallthru here, but we do not need to
do anything with it. */
if (gimple_code (stmt) == GIMPLE_COND)
return;
if (TREE_CODE (type) == COMPLEX_TYPE)
expand_complex_move (gsi, type);
else if (is_gimple_assign (stmt)
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
&& TREE_CODE (lhs) == SSA_NAME)
{
rhs = gimple_assign_rhs1 (stmt);
rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
gimple_assign_rhs_code (stmt)
== IMAGPART_EXPR,
false);
gimple_assign_set_rhs_from_tree (gsi, rhs);
stmt = gsi_stmt (*gsi);
update_stmt (stmt);
}
}
return;
}
/* Extract the components of the two complex values. Make sure and
handle the common case of the same value used twice specially. */
if (is_gimple_assign (stmt))
{
ac = gimple_assign_rhs1 (stmt);
bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
}
/* GIMPLE_CALL cannot get here. */
else
{
ac = gimple_cond_lhs (stmt);
bc = gimple_cond_rhs (stmt);
}
ar = extract_component (gsi, ac, false, true);
ai = extract_component (gsi, ac, true, true);
if (ac == bc)
br = ar, bi = ai;
else if (bc)
{
br = extract_component (gsi, bc, 0, true);
bi = extract_component (gsi, bc, 1, true);
}
else
br = bi = NULL_TREE;
al = find_lattice_value (ac);
if (al == UNINITIALIZED)
al = VARYING;
if (TREE_CODE_CLASS (code) == tcc_unary)
bl = UNINITIALIZED;
else if (ac == bc)
bl = al;
else
{
bl = find_lattice_value (bc);
if (bl == UNINITIALIZED)
bl = VARYING;
}
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
break;
case MULT_EXPR:
expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case RDIV_EXPR:
expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
break;
case NEGATE_EXPR:
expand_complex_negation (gsi, inner_type, ar, ai);
break;
case CONJ_EXPR:
expand_complex_conjugate (gsi, inner_type, ar, ai);
break;
case EQ_EXPR:
case NE_EXPR:
expand_complex_comparison (gsi, ar, ai, br, bi, code);
break;
default:
gcc_unreachable ();
}
}
/* Entry point for complex operation lowering during optimization. */
static unsigned int
tree_lower_complex (void)
{
gimple_stmt_iterator gsi;
basic_block bb;
int n_bbs, i;
int *rpo;
if (!init_dont_simulate_again ())
return 0;
complex_lattice_values.create (num_ssa_names);
complex_lattice_values.safe_grow_cleared (num_ssa_names, true);
init_parameter_lattice_values ();
class complex_propagate complex_propagate;
complex_propagate.ssa_propagate ();
need_eh_cleanup = BITMAP_ALLOC (NULL);
complex_variable_components = new int_tree_htab_type (10);
complex_ssa_name_components.create (2 * num_ssa_names);
complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names, true);
update_parameter_components ();
rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
for (i = 0; i < n_bbs; i++)
{
bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
if (!bb)
continue;
update_phi_components (bb);
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
expand_complex_operations_1 (&gsi);
}
free (rpo);
if (!phis_to_revisit.is_empty ())
{
unsigned int n = phis_to_revisit.length ();
for (unsigned int j = 0; j < n; j += 3)
for (unsigned int k = 0; k < 2; k++)
if (gphi *phi = phis_to_revisit[j + k + 1])
{
unsigned int m = gimple_phi_num_args (phi);
for (unsigned int l = 0; l < m; ++l)
{
tree op = gimple_phi_arg_def (phi, l);
if (TREE_CODE (op) == SSA_NAME
|| is_gimple_min_invariant (op))
continue;
tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
op = extract_component (NULL, arg, k > 0, false, false);
SET_PHI_ARG_DEF (phi, l, op);
}
}
phis_to_revisit.release ();
}
gsi_commit_edge_inserts ();
unsigned todo
= gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
BITMAP_FREE (need_eh_cleanup);
delete complex_variable_components;
complex_variable_components = NULL;
complex_ssa_name_components.release ();
complex_lattice_values.release ();
return todo;
}
namespace {
const pass_data pass_data_lower_complex =
{
GIMPLE_PASS, /* type */
"cplxlower", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_ssa, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex : public gimple_opt_pass
{
public:
pass_lower_complex (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () final override { return new pass_lower_complex (m_ctxt); }
unsigned int execute (function *) final override
{
return tree_lower_complex ();
}
}; // class pass_lower_complex
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex (gcc::context *ctxt)
{
return new pass_lower_complex (ctxt);
}
namespace {
const pass_data pass_data_lower_complex_O0 =
{
GIMPLE_PASS, /* type */
"cplxlower0", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_NONE, /* tv_id */
PROP_cfg, /* properties_required */
PROP_gimple_lcx, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_lower_complex_O0 : public gimple_opt_pass
{
public:
pass_lower_complex_O0 (gcc::context *ctxt)
: gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
{}
/* opt_pass methods: */
bool gate (function *fun) final override
{
/* With errors, normal optimization passes are not run. If we don't
lower complex operations at all, rtl expansion will abort. */
return !(fun->curr_properties & PROP_gimple_lcx);
}
unsigned int execute (function *) final override
{
return tree_lower_complex ();
}
}; // class pass_lower_complex_O0
} // anon namespace
gimple_opt_pass *
make_pass_lower_complex_O0 (gcc::context *ctxt)
{
return new pass_lower_complex_O0 (ctxt);
}